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Abstract. The nonlinear aspects of longitudinal motion of interacting point masses in a lattice are revis-
ited, with emphasis on the paradigm of charged dust grains in a dusty plasma (DP) crystal. Different
types of localized excitations, predicted by nonlinear wave theories, are reviewed and conditions for their
occurrence (and characteristics) in DP crystals are discussed. Making use of a general formulation, allow-
ing for an arbitrary (e.g. the Debye electrostatic or else) analytic potential form φ(r) and arbitrarily long
site-to-site range of interactions, it is shown that dust-crystals support nonlinear kink-shaped localized
excitations propagating at velocities above the characteristic DP lattice sound speed v0. Both compressive
and rarefactive kink-type excitations are predicted, depending on the physical parameter values, which
represent pulse- (shock-)like coherent structures for the dust grain relative displacement. Furthermore, the
existence of breather-type localized oscillations, envelope-modulated wavepackets and shocks is established.
The relation to previous results on atomic chains as well as to experimental results on strongly-coupled
dust layers in gas discharge plasmas is discussed.

PACS. 52.27.Lw Dusty or complex plasmas; plasma crystals – 52.35.Fp Electrostatic waves and oscillations
(e.g., ion-acoustic waves) – 52.25.Vy Impurities in plasmas

1 Introduction

A wide variety of linear electrostatic waves are known
to propagate in plasmas [1,2]. It is now established that
the inherent nonlinearity of electrostatic dispersive me-
dia gives birth to remarkable new phenomena, in par-
ticular related to the formation and stable propagation
of long-lived nonlinear structures, when a balance be-
tween nonlinearity and dispersion is possible [3,4]. Since
about a decade ago, plasma wave theories have received
a new boost after the prediction (and subsequent ex-
perimental confirmation) of the existence of new oscilla-
tory modes, associated with charged dust-grain motion in
dust-contaminated plasmas, as well as the possibility for
an important modification of existing modes due to the
presence of charged dust grains [5,6]. A unique new fea-
ture associated to these dusty (or complex) plasmas (DP)
is the existence of new strongly-coupled charged mat-
ter configurations, held responsible for a plethora of new
phenomena e.g. phase transitions, crystallization, melting
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etc., and possibly even leading to the formation of dust-
layers (DP crystals) when the inter-grain potential energy
far exceeds the average dust kinetic energy; a link has
thus been established between plasma physics and solid
state physics [7]. These dust Bravais-type quasi-lattices,
which are typically formed in the sheath region in low-
temperature dusty plasma discharges, and remain sus-
pended above the negative electrode due to a balance be-
tween the electric and gravity forces [8–11], are known
to support harmonic excitations (acoustic modes) in both
longitudinal and transverse-shear (horizontal-plane) direc-
tions, as well as optical-mode-like oscillations in the ver-
tical (off-plane) direction [12–19].

The longitudinal dust-lattice waves (LDLW) are remi-
niscent of waves (‘phonons’) propagating in atomic chains,
which are long known to be dominated by nonlinear
phenomena, due to the intrinsic nonlinearities of inter-
atomic interaction mechanisms and/or on-site substrate
potentials [20–24]. These phenomena have been asso-
ciated with a wealth of phenomena, e.g. dislocations
in crystals, energy localization, charge and information
transport in bio-molecules and DNA strands, coher-
ent signal transmission in electric lines, optical pulse
propagation and many more [25–29]. Even though cer-
tain well-known nonlinear mechanisms, e.g. shock for-
mation, electrostatic pulse propagation and instabilities,
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have been thoroughly investigated in weakly-coupled (gas-
like) dusty plasmas [6,30,32], the theoretical investiga-
tion of the relevance of such phenomena with waves in
DP crystals is still in a pre-mature stage; apart from the
pioneering works of Melandsø [12], who first derived a
Korteweg-de Vries (KdV) equation [31] associated with
longitudinal dust-lattice oscillations, Shukla [19], who pre-
dicted the formation of dust cavitons due to lattice dy-
namical coupling to surrounding ions, and the investiga-
tion of related nonlinear amplitude modulation effects by
Amin et al. [33] a little later, not much has been done in
the direction of a systematic elucidation of the relevance
of dust-lattice waves being described by the known model
nonlinear wave equations. It should, however, be stressed
that some recent attempts to trace the signature of non-
linearity in experiments [34–36] have triggered an effort
to interpret these results in terms of coherent structure
propagation [35–38], essentially along the physical ideas
suggested in reference [12].

In this paper, we aim at reviewing the procedure em-
ployed in the derivation of a nonlinear evolution equation
for longitudinal dust grain motion in DP lattices, and dis-
cussing the characteristics of the solutions. Emphasis is
made on the methodology, in a quite exhaustive manner,
in close relation with previous results on atomic chains,
yet always focusing on the particular features of DP crys-
tals; we will discuss, in particular:

– the physical assumptions underlying the continuum
approximation;

– the choise of truncation scheme, when departing from
the discrete lattice picture;

– the long-range electrostatic interactions, differentiat-
ing DP crystals from ordinary classical atomic chains
(spring models);

– the physical relation between different solutions ob-
tained.

Some of the results presented here are closely related to
well-known previous results, yet enriched with a new ana-
lytical set of coefficients allowing for any assumed range of
site-to-site interactions and any analytical form of the in-
teraction potential. The present study is, therefore, valid
in both short- and long-Debye length DP cases, and also
aims at providing a general ‘recipe’ which allows one, for
instance, to assume a modified (possibly non-Debye-type)
potential form and obtain the corresponding set of formu-
lae in a straightforward manner. In specific, we have in
mind the modification of the inter-grain interactions due
to ion flow in the sheath region surrounding the dust layer,
which may even lead to the crystal being destabilized, ac-
cording to recent studies from first principles [39,40].

Most of the results presented here are general and ap-
ply, in principle, to a sufficiently general class of chains
of classical agents (point masses) coupled via arbitrary
(and possibly long-range) interaction laws. Nevertheless,
our specific aim is to establish a first link between ex-
isting nonlinear theories and the description of longitudi-
nal dust-lattice oscillatory grain motion in a DP crystal.
At a first step, our description cannot help being ‘aca-
demic’, and somewhat abstract: an ideal one-dimensional

DP crystal is considered, i.e. a single, unidimensional,
infinite-sized, dust-layer of identical (in size, charge and
mass) dust grains situated at spatially periodic sites (at
equilibrium). Effects associated with crystal asymmetries,
defects, dust charging, ion-drag, dust mass variation and
multiple dust-layer coupling, are left for further considera-
tion [41]. Transverse (off-plane) motion, in particular, will
be addressed in a future work.

2 The model

2.1 Equation of motion

Let us consider a layer of charged dust grains (mass M ,
charge Q, both assumed constant for simplicity) forming
a Bravais lattice, of lattice constant r0. The Hamiltonian
of such a chain reads

H =
∑

n

1
2
M

(
drn

dt

)2

+
∑
m �=n

U(rnm),

where rn is the position vector of the nth grain;
Unm(rnm) ≡ Qφ(x) is a binary interaction potential func-
tion related to the electrostatic potential φ(x) around the
mth grain, and rnm = |rn − rm| is the distance between
the nth and mth grains. We shall limit ourselves to consid-
ering the longitudinal (∼ x̂) motion of the nth dust grain,
which obeys

M

(
d2xn

dt2
+ ν

dxn

dt

)
= −

∑
n

∂Unm(rnm)
∂xn

≡ QE(xn), (1)

where E(x) = −∂φ(x)/∂x is the electric field; the usual
ad hoc damping term is introduced in the left-hand-side
(lhs), involving the damping rate ν, to account for the dust
grain collisions with neutrals. Note that a one-dimensional
(1D) DP layer is considered here, but the generalization
to a two-dimensional (2D) grid is straightforward. At a
first step, we have omitted the external force term Fext,
often introduced to account for the initial laser excitation
and/or the parabolic confinement which ensures horizon-
tal lattice equilibrium in experiments [35]. The analogous
formulae for non-electrostatic, e.g. spring-like coupling in-
teractions are readily obtained upon some trivial modifi-
cations in the notation.

The additive structure of the contribution of each site
to the potential interaction force in the right-hand-side
(rhs) of equation (1) allows us to express the electric field
in (1) as:

E(x) = − ∂

∂xn

∑
m

φ(xn − xm)

= +
∑

l

[
φ′(xn+l − xn) − φ′(xn − xn−l)

]

=
N∑

l=1

∞∑
l′=1

1
l′!

dl′+1φ(r)
drl′+1

∣∣∣∣
r=lr0

×
[
(δxn+l − δxn)l′ − (δxn − δxn−l)l′

]
(2)
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where l denotes the degree of vicinity, i.e. l = 1 accounts
for the nearest-neighbour interactions (NNI) and l ≥ 2
accounts for distant- (second or farther) neighbour in-
teractions (DNI). The summation upper limit N natu-
rally depends on the model and the interaction mecha-
nism; even though N ‘traditionally’ equals either 1 or 2 in
most studies of atomic chains, one should consider higher
values for long-range-interactions e.g. Coulomb or Debye
(screened) electrostatic interactions (the latter case is ad-
dressed below, in detail). In the last step, we have Taylor-
developed the interaction potential φ(r) around the equi-
librium inter-grain distance lr0 = |n − m|r0 (between lth
order neighbours), viz.

φ(rnm) =
∞∑

l′=0

1
l′!

dl′φ(r)
drl′

∣∣∣∣
r=|n−m|r0

(xn − xm)l′ ,

where l′ denotes the degree (power) of nonlinearity in-
volved in each contribution: l′ = 1 is the linear interaction
term, l′ = 2 stands for the quadratic nonlinearity, and so
forth. Obviously, δxn = xn−x

(0)
n denotes the displacement

of the nth grain from equilibrium, which now obeys

M

(
d2(δxn)

dt2
+ ν

d(δxn)
dt

)
=

Q {φ′′(r0)(δxn+1 + δxn−1 − 2δxn)

+
N∑

l=2

φ′′(lr0)(δxn+l + δxn−l − 2δxn)

+
∞∑

l′=2

1
l′!

dφl′+1(r)
drl′+1

∣∣∣∣
r=r0

× [(δxn+1 − δxn)l′ − (δxn − δxn−1)l′]
+

N∑
l=2

∞∑
l′=2

1
l′!

dφl′+1(r)
drl′+1

∣∣∣∣
r=lr0

×
[
(δxn+l − δxn)l′ − (δxn − δxn−l)l′

]}
. (3)

We have distinguished the linear/nonlinear contributions
of the first neighbors (1st/3rd lines) from the correspond-
ing longer neighbor terms (2nd/4th lines, respectively).

Keeping all upper summation limits at infinity, the last
discrete difference equation (3) is exactly equivalent to
the complete equation (1). However, the former needs to
be truncated to a specific order in l, l′, depending on the
desired level of sophistication, for reasons of tractability.

2.2 Continuum approximation

We shall now adopt the standard continuum approxima-
tion often employed in solid state physics [7], trying to be
very systematic and keeping track of any inevitable term
truncation. We will assume that only small displacement

variations occur between neighboring sites, i.e.

δxn±l = u ± lr0
∂u

∂x
+

1
2
(lr0)2

∂2u

∂x2

± 1
3!

(lr0)3
∂3u

∂x3
+

1
4!

(lr0)4
∂4u

∂x4
+ ...,

i.e.

δxn+l − δxn = lr0
∂u

∂x
+

1
2
(lr0)2

∂2u

∂x2

+
1
3!

(lr0)3
∂3u

∂x3
+

1
4!

(lr0)4
∂4u

∂x4
+ ...

=
∞∑

m=1

(lr0)m

m!
∂mu

∂xm
, (4)

and

δxn − δxn−1 = lr0
∂u

∂x
− 1

2
(lr0)2

∂2u

∂x2

+
1
3!

(lr0)3
∂3u

∂x3
− 1

4!
(lr0)4

∂4u

∂x4
+ ...

= −
∞∑

m=1

(−1)m (lr0)m

m!
∂mu

∂xm
, (5)

where the displacement δxn(t) is now expressed as a con-
tinuous function u = u(x, t).

Accordingly, the linear contributions (i.e. the first two
lines) in (3) now give

Q

N∑
l=1

φ′′(lr0)(δxn+l + δxn−l − 2δxn)

= Q

∞∑
m=1

N∑
l=1

φ′′(lr0)(lr0)2m 2
(2m)!

∂2mu

∂x2m

= Q

∞∑
m=1

2
(2m)!

[ N∑
l=1

φ′′(lr0)(lr0)2m

]
∂2mu

∂x2m

≡ M

∞∑
m=1

c2m
∂2mu

∂x2m

= M(c2uxx + c4uxxxx + c6uxxxxxx + ...) (6)

where the subscript in ux denotes differentiation with re-
spect to x, i.e. uxx = ∂2u/∂x2 and so on. We see that
only even order derivatives contribute to the linear part;
this is rather expected, since the model (for ν = 0) is
conservative, whereas odd-order derivatives might intro-
duce a dissipative effect, e.g. via a Burgers-like (∼ uxx)
additional term in the KdV equation below [42–44]. The
definition of the coefficients c2m (m = 1, 2, ...) is obvious;
the first term reads

c2 =
Q

M
r2
0

N∑
l=1

φ′′(lr0)l2 ≡ v2
0 ≡ ω2

0,Lr2
0 , (7)

which defines the characteristic second-order dispersion
(‘sound’) velocity v0 (cf. vp in (6) of Ref. [38]), related to
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the longitudinal oscillation eigenfrequency ω0,L; also

c4 =
1
12

Q

M
r4
0

N∑
l=1

φ′′(lr0)l4 ≡ v2
1r2

0 ,

c6 =
2
6!

Q

M
r6
0

N∑
l=1

φ′′(lr0)l6, (8)

and so on. Notice that v2
1 = v2

0/12 for NNI, i.e. if (and only
if) one stops the summation at lmax = N = 1, like equa-
tion (26) in reference [12] (and unlike Eq. (5) in Ref. [38],
whose 2nd term in the rhs is rather not correct, for l �= 1
i.e. DNI). See that the ‘relative weight’ of any given 2mth
contribution as compared to the previous one is roughly
(2m − 2)!/(2m)!, e.g. 4!/6! = 1/30 for m = 3, which
somehow justifies higher (than, say, m = 2) order con-
tributions often neglected in the past; nevertheless, this
argument should rigorously not be taken for granted, as a
given function u(x, t) and/or potential φ(x), may present
higher numerical values of higher-order derivatives, bal-
ancing this numerical effect; clearly, any truncation in an
infinite series inevitably implies loss of information.

We may now treat the quadratic nonlinearity contri-
bution in (3) (the last two lines for l′ = 2) in the same
manner. Making use of equations (4, 5), and also of the
identity a2 − b2 = (a + b)(a − b), one obtains

Q
1
2!

N∑
l=1

φ′′′(lr0)
[
(δxn+l − δxn)2 − (δxn − δxn−1)2

]
=

Q
∞∑

m=1

∞∑
m′=1

2
(2m − 1)!(2m′)!

×
[ N∑

l=1

φ′′′(lr0)(lr0)2(m+m′)−1

]
∂2m−1u

∂x2m−1

∂2m′
u

∂x2m′

≡ M

∞∑
m=1

∞∑
m′=1

cm,m′
∂2m−1u

∂x2m−1

∂2m′
u

∂x2m′

= M(c1,1uxuxx + c1,2uxuxxxx + c2,1uxxuxxx + ...).
(9)

The definition of the coefficients cm,m′ (m, m′ = 1, 2, ...)
is obvious; the first few terms read

c1,1 =
Q

M
r3
0

N∑
l=1

φ′′′(lr0)l3, (10)

which defines the first nonlinear contribution (e.g. B in
Eqs. (5, 7) in Ref. [38]; we note that a factor 1/2 and
1/M is missing therein, respectively),

c1,2 =
2

1!4!
Q

M
r5
0

N∑
l=1

φ′′′(lr0)l5,

c2,1 =
2

3!2!
Q

M
r5
0

N∑
l=1

φ′′′(lr0)l5,

and so on.

The cubic nonlinearities in (3) (the last two lines for
l′ = 3) may now be treated in the same manner. Making
use of equations (4, 5), as well as of the identity: a3−b3 =
(a − b)(a2 + ab + b2), one obtains

Q
1
3!

N∑
l=1

φ′′′(lr0)
[
(δxn+l−δxn)3−(δxn−δxn−1)3

]
=

Q
1
3

∞∑
m=1

∞∑
m′=1

∞∑
m′′=1

1 − (−1)m′
+ (−1)m′+m′′

(2m)!m′!m′′!

×
[ N∑

l=1

φ′′′′(lr0)(lr0)2m+m′+m′′
]
∂2mu

∂x2m

∂m′
u

∂xm′
∂m′′

u

∂xm′′

≡ M

∞∑
m=1

cm,m′,m′′
∂2mu

∂x2m

∂m′
u

∂xm′
∂m′′

u

∂xm′′

= M

[
c1,1,1(ux)2uxx + (c1,1,2 + c1,2,1)ux(uxx)2

+ c1,2,2(uxx)3 + ...

]
. (11)

The definition of the coefficients cm,m′,m′′ (m, m′, m′′ =
1, 2, ...) is obvious; their form is immediately deduced upon
inspection, e.g.

c1,1,1 =
1
2

Q

M
r4
0

N∑
l=1

φ′′′′(lr0)l4,

c1,1,2 = −c1,2,1 =
1
12

Q

M
r5
0

N∑
l=1

φ′′′′(lr0)l5, (12)

and so forth. We note that the second term in equa-
tion (11) cancels.

Higher order nonlinearities in equation (3) (the last
two lines therein for l′ ≥ 4), related to fifth- (or higher-)
order derivatives of the interaction potential φ, will delib-
erately be neglected in the following, since they are rather
not likely to affect the dynamics of small grain displace-
ments. It should be pointed out that, rigorously speaking,
there is no a priori criterion of whether some truncation
of the above infinite sums is preferable to another; some
ad hoc truncation schemes, proposed in the past, should
only be judged upon by careful numerical comparison of
the relevant contributions — e.g. in equations (6, 9, 11)
above — and/or, finally, a comparison of the analytical
results derived to experimental ones.

Keeping the first few contributions in the above sums,
one obtains the continuum analog of the discrete equation
of motion

ü+νu̇−v2
0uxx = v2

1r2
0uxxxx−p0uxuxx+q0(ux)2uxx, (13)

which is the final result of this section. Notice that
uxuxx = (u2

x)x/2; also, (ux)2uxx = (u3
x)x/3. The coeffi-

cients

v2
0 ≡ c2, v2

1r2
0 ≡ c4,

p0 ≡ −c1,1, q0 ≡ c1,1,1,
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defined by equations (7, 8, 10, 12), respectively, should be
evaluated for a given potential function φ, by truncating,
if inevitable, all summations therein to a given order lmax.
Note that, quite surprisingly, the infinite neighbour contri-
butions may be exactly summed up, in the case of Debye
(screened) electrostatic interactions, as we shall show be-
low. Let us point out that equation (13) is general; the
only assumption made is the continuum approximation.
Also, should one prefer to improve the above truncation
scheme, e.g. by including more nonlinear terms, one may
readily go back to the above formulae and simply keep one
or more extra term(s); in any case, one can find the ex-
act form of all (retained and truncated) coefficients above.
On the other hand, equation (13) generalizes the previous
known results for monoatomic lattices in that it holds for
an arbitrary degree of inter-site vicinity (range of interac-
tions).

Let us point out that the above definitions of the coef-
ficients in equation (13) are inspired by the Debye–Hückel
(Yukawa) potential form (whose odd/even derivatives are
negative/positive; see below), in which case they are de-
fined in such a way that all of v2

0 , v2
1 , p0 and q0 take pos-

itive values. Nevertheless, keep in mind that the sign of
these coefficients for a different potential function φ is, in
principle, not prescribed; indeed, analytical and numerical
studies of the nature of the inter-grain interactions from
first principles suggest that the presence of ion flow, for in-
stance, may result in a structural change in the form of φ,
leading to lattice oscillation instability and presumably
crystal melting [45]; see e.g. references [39,40]. However,
our physical problem loses its meaning once this happens;
therefore, we will assume, as a working hypothesis in the
following, that c2 and c4 bear positive values (so that v0,
v1 are real) — as a requirement for the stability of the
lattice — and that, in principle (yet not necessarily), the
same holds for p0 and q0.

We observe that, upon setting ν = 0, q0 = 0, r0 = a
and l = 1 (NNI), which imply that v2

1 = v2
0a2/12 and

p0 = −Qa3φ′′′(a)/M ≡ γ(a)a3/M in equation (13), one
recovers exactly equation (26) in reference [12] (also see
the definition in Eq. (16) therein); also cf. reference [33].
Equations (5–7) in reference [38] are also recovered.

In the following, we will drop the damping term (sec-
ond term in the right-hand-side of Eq. (13)), which is
purely phenomenological; the damping effect may then be
re-inserted in the analysis at any step further, by plainly
adding a similar ad hoc term to the equation(s) modeling
the grain dynamics. It may be noted that damping comes
out to be weak, in experiments [35], so one may in prin-
ciple proceed by including dissipation effects a posteriori,
and then comparing theoretical or numerical results to
experimental ones.

2.3 An exactly computable case — the Debye ordering

Most interestingly, the summations (in l) in the above def-
initions of coefficients cm,m′,... above, converge and may
exactly be computed in the Debye-Hückel (Yukawa) po-

tential case: φD(r) = Qe−r/λD/r, for any given number N
of neighboring site vicinity: N = 1 for the nearest neigh-
bor interactions (NNI), N = 2 for the second-neighbor
interactions (SNI) and even N equal to infinity, for an
infinite chain. The details of the calculation are given in
the Appendix, so only the final result will be given here,
for later use in this text. Note the definition of the lat-
tice parameter κ = r0/λD, to be extensively used in the
following; in fact, κ is roughly of the order of (or slightly
above) unity in laboratory experiments.

Truncating the summations at N = 1 (NNI), rela-
tions (7, 8, 10, 12) give

(
ω

(NNI )
L,0

)2

=
2Q2

Mλ3
D

e−κ 1 + κ + κ2/2
κ3

=

(
v
(NNI )
0

)2

κ2λ2
D

= 12

(
v
(NNI )
1

)2

κ2λ2
D

, (14)

p
(NNI )
0 =

6Q2

MλD
e−κ

(
1
κ

+ 1 +
κ

2
+

κ2

6

)
, (15)

q
(NNI )
0 =

12Q2

MλD
e−κ

(
1
κ

+ 1 +
κ

2
+

κ2

6
+

κ3

24

)
. (16)

These relations coincide with the ones in previous studies
for NNI [12,33].

Truncating the summations at N = 2 (SNI), rela-
tions (7, 8, 10, 12) give

(
ω

(SNI )
L,0

)2

=
2Q2

Mλ3
D

(
e−κ 1 + κ + κ2/2

κ3
+e−2κ

1
2 + κ + κ2

κ3

)

=v
(SNI )
0

2
/(κ2λ2

D), (17)

accompanied by an extended set of expressions for v
(SNI )
1

2

(�= (v(SNI )
0 )2/12, now, unlike in the NNI case above),

p
(SNI )
0 and q

(SNI )
0 (see in the Appendix for details).

For higher lmax = N , even though the effect of adding
more neighbors is cumulative, since all extra contribu-
tions are positive, these diminish fast and converge, for
infinite N , to a finite set of expressions, which can be
calculated via the identities:

∑∞
l=1 al = a/(1 − a) and∑∞

l=1 al/l = −ln(1 − a) (for 0 < a < 1); details can
be found in Appendix. This procedure is similar to the
one proposed in reference [18] and later adopted in refer-
ences [35,38]. One obtains

ω2
L,0 =

2Q2

Mλ3
D

1
κ3

[
e−κ/2 κ

2
csch

(
κ

2

)

+
κ2

8
csch2

(
κ

2

)
− ln(1 − e−κ)

]
, (18)

for the characteristic oscillation frequency ωL,0 =
v0/(κλD); the result for v0 is obvious; cschx = 1/ sinhx.
A numerical investigation shows that the numerical value
of the frequency in the region near r0 ≈ λD (i.e. κ ≈ 1)
is thus increased by a factor of 1.5 or higher, roughly,
compared to the NNI expression above (see Fig. 1),
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(a)

(b)

Fig. 1. (a) The linear oscillation frequency squared ω2 (nor-
malized over Q2/(Mλ3

D)) is depicted against the lattice con-
stant κ, for N = 1 (first-neighbor interactions: —), N =
2 (second-neighbor interactions: - - -), N = ∞ (infinite-
neighbors: – – –), from bottom to top. (b) Detail near κ ≈ 1.

and so does the characteristic second-order dispersion ve-
locity v2

0 = ωL,0r0 = ωL,0λDκ (see Fig. 2). A similar effect
is witnessed for the characteristic velocity v1, related to
the fourth-order dispersion

v2
1 =

Q2

MλD

1
96κ

csch4

(
κ

2

)[
(κ2 + 2) coshκ

+ 2(κ2 − 1 + κ sinhκ)
]
, (19)

(see Fig. 3) and for the nonlinearity coefficients

p0 =
Q2

MλD

{
1

(eκ − 1)3

[
6 + eκ(κ2 − 3κ − 12)

+ e2κ(κ2 + 3κ + 6)
]
− 6

κ
ln
(
1 + sinh κ − coshκ

)}
, (20)

and

q0 =
Q2

MλD

{
1

(eκ − 1)4

[
−12 + e2κ[(κ3 + 12κ + 48) coshκ

+ 2(κ3 − 6κ − 18) + 2(κ2 − 6) sinhκ]
]

− 12
κ

ln
(
1 + sinh κ − coshκ

)}
. (21)

Upon simple inspection of Figures 4 and 5, one deduces
that q0 takes practically double the value of p0 everywhere,

(a)

(b)

Fig. 2. (a) The characteristic 2nd order dispersion velocity
squared v2

0 (normalized over Q2/(MλD)) is depicted against
the lattice constant κ, for N = 1 (first-neighbor interactions:
—), N = 2 (second-neighbor interactions: - - -), N = ∞
(infinite-neighbors: – – –), from bottom to top. (b) Detail
near κ ≈ 1.

and thus draws the conclusion that q0 should rather not
be omitted in equation (13) (cf. e.g. Refs. [12,30,35,38]),
for the case of the Debye potential.

3 Linear oscillations

Let us first consider the linear regime in longitudinal grain
oscillations. For the sake of rigor, one may revert to the
discrete formula (3) and consider its linearized form by
simply neglecting the two last (double) sums therein. In-
serting the ansatz δxn ∼ exp i(nkr0 − ωt), where ω is the
phonon frequency and k = 2π/λ (respectively, λ) is
the wavenumber (wavelength), one immediately obtains
the general dispersion relation

ω(ω + iν) =
4Q

M

N∑
l=1

φ′′(lr0) sin2 lkr0

2

=
4Q

M

N∑
l=1

φ′′(lκλD) sin2 lκ(kλD)
2

. (22)

One may readily verify that the standard 1D acoustic wave
dispersion relation ω ≈ v0k is obtained in the small k (long
wavelength) limit: check by setting sin(lkr0/2) ≈ lkr0/2
(and recalling the general definition of v0 above). Of
course, taking this limit simply amounts to linearizing the
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(a)

(b)

Fig. 3. (a) The characteristic 4th order dispersion velocity
squared v2

1 (normalized over Q2/(MλD)) is depicted against
the lattice constant κ, for N = 1 (first-neighbor interactions:
—), N = 2 (second-neighbor interactions: - - -), N = ∞
(infinite-neighbors: – – –), from bottom to top. (b) Detail near
κ ≈ 1.

continuum equation of motion derived above (and keeping
the lowest contribution in k). As pointed out before (see
e.g. Ref. [18]), one thus recovers the dust-acoustic wave
dispersion relation obtained in the strong-coupling dusty
plasma regime (upon defining the density nd as ∼ r−3

0 ,
which may nevertheless appear somehow heuristic in this
1D model).

Notice that the form of the dispersion relation, in
principle, depends on the value of N . However, in the
case of the Debye interactions, i.e. explicitly substituting
d2φD(x)/dx2 into (22), one obtains

ω(ω+iν) =
4Q2

Mλ3
D

N∑
l=1

e−lκ 2 + 2κ + (lκ)2

(lκ)3
sin2 lkr0

2
. (23)

A numerical investigation, e.g. for κ = 1 (see Fig. 6),
suggests that the dispersion curve quickly sums up to a
limit curve, even for not so high values of N (practically
for N = 2 already). The values of the frequency reduce
with increasing κ, as suggested by the exponential term.
We see that the dispersion curve possesses a maximum at
k = π/r0 = π/(κλD) for any value of κ and N .

The dispersion curves of dust-lattice waves have been
investigated by both experiments (see e.g. Refs. [46,47])
and ab initio numerical simulations [48]. In should never-
theless be acknowledged that the results of these studies
do not absolutely confirm the dispersion curves obtained

(a)

(b)

Fig. 4. (a) The nonlinearity coefficient p0 (normalized over
Q2/(MλD)) is depicted against the lattice constant κ for N =
1 (first-neighbor interactions: —), N = 2 (second-neighbor
interactions: - - -), N = ∞ (infinite-neighbors: – – –), from
bottom to top. (b) Detail near κ ≈ 1.

(a)

(b)

Fig. 5. (a) The nonlinearity coefficient q0 (normalized over
Q2/(MλD)) is depicted against the lattice constant κ for N =
1 (first-neighbor interactions: —), N = 2 (second-neighbor
interactions: - - -), N = ∞ (infinite-neighbors: – – –), from
bottom to top. (b) Detail near κ ≈ 1.
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Fig. 6. Dispersion relation for the Debye interactions, neglect-
ing damping; cf. (23) for ν = 0: the square frequency ω2,
normalized over Q2/(Mλ3

D), is depicted versus the normalized
wavenumber kr0/π for N = 1 (first-neighbor interactions: —),
N = 2 (second-neighbor interactions: - - -), N = 7 (up to 7th
nearest-neighbors: – – –), i.e. from bottom to top.

above, which suggests, as pointed out in reference [46],
that one-dimensional crystal models may be inappropri-
ate for real dust crystals.

4 The Korteweg–de Vries (KdV) equation

In order to take into account weak nonlinearities, a proce-
dure which is often adopted at a first step consists in keep-
ing only the first nonlinear contribution in equation (13)
(by cancelling the last term in the rhs, i.e. setting q0 = 0)
and then considering excitations moving at a velocity close
to the characteristic velocity v0. A Galilean variable trans-
formation, viz.

x → ζ = x − v0t, t → τ = t, w = uζ, (24)

then provides the Korteweg–de Vries (KdV) equation

wτ − sawwζ + bwζζζ = 0, (25)

where a term uττ was assumed of higher-order and thus
neglected. The coefficients are

a =
|p0|
2v0

, b =
v2
1r2

0

2v0
, s = sgnp0 = p0/|p0|. (26)

We have introduced the parameter s (= +1/−1), denoting
the sign of p0, which may change the form of the solutions
(see below); as discussed above, it is equal to s = +1
for the Debye-type interactions. It should be noted that
this procedure is identical to the one initially adapted
for dust-lattice-waves in [12] and then followed in refer-
ences [30,35,38] (for s = +1) as may readily be checked,
yet the new aspect here lies in the generalized definitions of
the physical parameters above. Also notice that positive-
oriented (∼ x̂) propagation was considered; adopting the
above procedure in backward (∼ −x̂) propagation is triv-
ial, yet it should be carried out by re-iterating the ana-
lytical procedure and not by plainly considering v → −v:
the KdV equation is not symmetric with respect to this
transformation (also see that the velocity v appears under
a square root in the formulae).

As a mathematical entity, the KdV Equation has been
extensively studied [3,27,49–55], so only necessary details
will be summarized here. It is known to possess a rich va-
riety of solutions, including periodic (non-harmonic) so-
lutions (cnoidal waves, involving elliptic integrals) [54].
For vanishing boundary conditions, equation (25) can be
shown (see e.g. in Refs. [27,55]) to possess one- or more
(N -) soliton localized solutions wN (ζ, τ ) which bear all the
well-known soliton properties: namely, they propagate at
a constant profile, thanks to an exact balance between
dispersive and nonlinear effects, and survive collisions be-
tween one another. The simplest (one-) soliton solution
has the pulsed-shaped form

w1(ζ, τ) = −sw1,msech2

[
(ζ − vτ − ζ0)/L0

]
, (27)

where x0 is an arbitrary constant, denoting the initial soli-
ton position, and v is the velocity of propagation; in prin-
ciple, v may take any real value even though its range
may be physically limited, as in our case, where v has
been assumed close to v0; this constraint will be relaxed
below. A qualitative result to be retained from the soliton
solution in (27) is the velocity dependence of both soliton
amplitude w1,m and width L0, viz.

w1,m = 3v/a = 6vv0/|p0|,
L0 = (4b/v)1/2 = [2v2

1r
2
0/(vv0)]1/2.

We see that w1,mL2
0 = constant, implying that nar-

rower/wider solitons are taller/shorter and propagate
faster/slower. These qualitative aspects of dust-lattice
solitons have recently been confirmed by dust-crystal ex-
periments [35]. Notice that the solutions of (25) satisfy an
infinite set of conservation laws [3,55]; in particular, the
solitons wN carry a constant ‘mass’ M ∼ ∫ wdζ (which is
negative for a negative pulse), ‘momentum’ P ∼ ∫ w2dζ,
‘energy’ P ∼ ∫

(w2
x/2 + u3)dζ, and so forth (integra-

tion is understood over the entire x-axis) [52,55]. See
that the forementioned amplitude-width dependence of
the 1-soliton solution (27) is heuristically deduced from
the soliton ‘mass’ conservation law (implying conserva-
tion of the surface under the bell-shaped curved in Fig. 7):
taller excitations have to be thinner and vice versa.

Inverting back to our initial reference frame, one ob-
tains, for the spatial displacement variable u(x, t), the
kink/antikink (for s = +1/−1) solitary wave form

u1(x, t) = −su1,m tanh
[
(x − vt − x0)/L1

]
, (28)

which represents a localized region of compres-
sion/rarefaction (for s = +1/−1, respectively), propagat-
ing to the positive direction of the x-axis (see Fig. 7).
The amplitude u1,m and the width L1 of this shock
excitation are

u1,m =
6v1r0

|p0|
[
2v0(v − v0)

]1/2
,

L1 = r0

[
2v2

1

v0(v − v0)

]1/2

=
12v2

1r
2
0

|p0|
1

Am
,
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(a)

(b)

Fig. 7. Localized antikink/kink (negative/positive pulse) func-
tions, related to the KdV equation (25), for the displacement
u(x, t) (relative displacement w(x, t) ∼ ∂u(x, t)/∂x), for pos-
itive/negative p0 coefficient i.e. s = +1/−1, are depicted in
figures (a)/(b); recall that (a) holds for Debye interactions;
arbitrary parameter values: v = 1 (solid curve), v = 2 (long
dashed curve), v = 3 (short dashed curve).

imposing ‘supersonic’ propagation (v > v0) for stability, in
agreement with experimental results in dust crystals [35].
Notice that faster solitons will be narrower, and thus more
probable to ‘feel’ the lattice discreteness, contrary to the
continuum assumption above; therefore, one may impose
the phenomenological criterion: L � r0, amounting to
the condition v/v0 � 1 + 2v2

1/v2
0 (≈ 1.17 for the Debye

NNI case; see (14) above), in order for the above (con-
tinuum) solution to be sustained in the (discrete) chain.
Nevertheless, supersonic wave stable propagation has been
numerically verified at a wide range of velocity values in
atomic chains [23,57], where equations (13, 25) arise via
a procedure similar to the one outlined above; also see
reference [58] for a recent experiment in crystalline solids.
Finally, note that v0 in real DP crystals bears values as
low as a few tens of mm/s [34,35].

Remarkably, equation (25) is exactly solved via the
Inverse Scattering Transform [53,55,56], for any given ini-
tial condition u(ζ, 0), which is generally seen to break-
up into a number of (say N , depending on u(ζ, 0) [56])
solitons plus a tail of background oscillations. These con-
siderations, including, in particular, the two-soliton solu-
tion w2 of equation (25), which represents two distinct
humps moving at different velocities and colliding dur-
ing propagation without changing shape, have been pos-
tulated to be of relevance in the interpretation of recent
dusty plasma discharge experiments [35,38].

The wide reputation of the KdV equation (25) is
mostly due to the exhaustive knowledge of its analytical
properties [3,27,51–55], in addition to its omni-presence
in a variety of physical contexts, not excluding the physics
of ordinary (ideal, i.e. electron-ion) plasmas [3,4] and,
more recently, dusty plasmas [6,30]. However, in the above
dusty-plasma-crystal context, it has been derived under
specific assumptions (low discreteness and low nonlinear-
ity effects; also, a propagation velocity v ≈ v0) which may
be questionable, in a real DP crystal. Even if the first one
is virtually impossible to cope with, analytically, the latter
ones may be somehow relaxed via a different approach, to
be outlined below.

5 Higher-order Korteweg–de Vries (EKdV)
equations

In order to derive a KdV equation from the continuum
equation of motion (13), we have neglected the coeffi-
cient q, which is related to the cubic nonlinearity of the
interaction potential. Nevertheless, a simple numerical in-
vestigation shows that this term is not small, and may, in
certain cases, even dominate over the quadratic term p,
as in the Debye potential case (see the discussion above).
Therefore, one is tempted to find out how the dynamics
is modified if this term is taken into account.

5.1 The extended Korteweg–de Vries (EKdV) equation

Repeating the procedure which led to equation (25), in
the previous section, yet now keeping the fourth order
derivative coefficient q �= 0 in equation (13), one obtains
the EKdV equation

wτ − sawwζ + âw2wζ + bwζζζ = 0, (29)

where all coefficients are given in (26) except â = q0/(2v0);
recall that a, b are positive by definition. We shall see be-
low that p0, q0 > 0 for Debye interactions (yet not nec-
essarily, in general), so that the nonlinearity coefficients,
i.e. −sa (for s = +1) and â, bear negative and positive
(respectively) values in this (Yukawa crystal) case.

The EKdV equation (29) was thoroughly studied in
a classical series of papers by Wadati [21], who derived
it for nonlinear lattices, then obtained its travelling-wave
and, separately, periodic (cnoidal wave) solutions and, fi-
nally, exhaustively studied its mathematical properties.
Both compressional and rarefactive solitons (say, w2,±, to
be distinguished from the KdV solution w1) were found
to solve equation (29) (for either signs of s); adapted to
our notation here [59], they are of the form

w
(1)
2 (ζ,τ) =

−sv/{C cosh2[(ζ−vτ−ζ0)/L0]+D sinh2[(ζ−vτ−ζ0)/L0]},
(30)
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and

w
(2)
2 (ζ,τ) =

+sv/{D cosh2[(ζ−vτ−ζ0)/L0]+C sinh2[(ζ−vτ−ζ0)/L0]},
(31)

where

C =
a

6

(√
1 +

6âv

a2
+ 1
)

=
1

12v0

(√
p2
0 + 12q0v0v + |p0|

)
,

D =
a

6

(√
1 +

6âv

a2
− 1
)

=
1

12v0

(√
p2
0 + 12q0v0v − |p0|

)
, (32)

the width L0 was defined above, and v > 0 is the prop-
agation velocity. For s = +1/−1, respectively, the first
expression represents a propagating localized compres-
sion/rarefaction, while the second denotes a (larger, see
comment below; cf. Fig. 8) rarefaction/compression, re-
spectively. Notice that, for q0 ∼ â = 0, the first expression
recovers the KdV result obtained previously (since v/C
then recovers the KdV soliton width w1,m), while the sec-
ond results in a divergent (physically unacceptable) solu-
tion [21]. Following Wadati, we may re-arrange (30, 31) as

w
(j)
2 (ζ, τ) = −sεj

2
√

6b√
â

× ∂

∂ζ

{
tan−1

[
W̃

(j)
2 tanh

(
ζ − vτ − ζ0

L0

)]}
, (33)

provided that â ∼ q0 �= 0. Here

W̃
(j)
2 =



√

1 + 6âv
a2 − εj√

1 + 6âv
a2 + εj




1/2

. (34)

Furthermore, v > 0 is the propagation velocity in the
frame {ζ, τ} and j = 1 (2) recovers w

(1)
2 (w(2)

2 ) above, so
that ε1 (ε2) is equal to +1 (−1), representing rarefactive
(compressive) solutions, for s = +1 — e.g. the Debye case
— and vice versa for s = −1 (which recovers Wadati’s no-
tation). The pulse width now depends on both L0 (defined
as previously) and W̃

(j)
2 . The pulse value for s = −1 [21]

satisfies:

w− ≡ −(
√

a2 + 6âv + a) < w
(1)
2 < 0 < w

(2)
2

< (
√

a2 + 6âv − a) ≡ w+,

(for s = +1, one should permute the superscripts 1 and 2);
since |w−| > |w+|, one expects, for s = −1, a small rar-
efactive and a large compressive pulse; the opposite holds
for s = +1, e.g. in a Debye crystal case: see Figure 8.

(a)

(b)

Fig. 8. (a) The two localized pulse solutions of the EKdV equa-
tion (29) for the relative displacement w(x, t) ∼ ∂u(x, t)/∂x are
depicted for some set of (positive) values of the p0 and q0 co-
efficients (i.e. s = +1): the first (dashed curve)/second (short-
dashed) solution, as given by (30)/(31), represents the smaller
negative/larger positive pulses. The larger negative pulse (solid
curve) denotes the solution of the KdV equation (25) for the
same parameter set. (b) The corresponding solutions for the
particle displacement u(x, t).

Inverting to the lattice displacement coordinate u ∼∫
wdζ, expressed in the original coordinates {x, t}, we ob-

tain

u
(j)
2 (x, t) = −sεj2

√
6v2

1

q0
r0

× tan−1

[
W

(j)
2 tanh

(
x − vt − x0

L1

)]
, (35)

where

W
(j)
2 =

(√
p2
0 + 12q0v0(v − v0) − εj |p0|√

p2
0 + 12q0v0(v − v0) + εj |p0|

)1/2

, (36)

and j = 1, 2. As expected, for any given s (= ±1), the two
different kink/antikink solutions obtained for different j
(= 1 or 2) are not symmetric; cf. Figure 8. Notice that the
maximum value now also depends on W

(j)
2 (j = 1, 2).

In conclusion, the extended KdV equation provides a
more complete description of the nonlinear dynamics of
the lattice, compared to the KdV equation. In particular,
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the EKdV compressive (rarefactive) pulse soliton obtained
for s = +1 (s = −1), i.e. p0 > 0 (p0 < 0) is slightly
smaller than its KdV counterpart (see Fig. 8), but the
EKdV also predicts the possibility for a rarefactive (com-
pressive) soliton, in either case, to form and propagate
in the same lattice. In the particular case of Debye crys-
tals, the net new result to be retained is the prediction of
the existence of a rarefactive new excitation, in addition
to the rarefactive one, observed in experiments. Never-
theless, theoretical studies on molecular chains seem to
suggest that the additional shock-like localized mode pre-
dicted by the EKdV equation will not be as stable as its
(KdV-related) counterpart. This prediction should, there-
fore, be confirmed numerically (and experimentally) be-
fore being taken for granted.

5.2 The modified Korteweg–de Vries (MKdV)
equation

Note, for the sake of rigor, that upon setting p0 ∼ a = 0
in equation (29) above, one obtains a modified KdV
(MKdV) equation (with only a cubic nonlinearity term).
The MKdV equation shares all the qualitative proper-
ties of the KDV equation and is, in fact, related to it
via a Miura transformation [55]. It has two (both nega-
tive and positive, for each value of s) pulse soliton solu-
tions which follow immediately from the preceding solu-
tions (30, 31) of the EKdV equation, upon setting p0 = 0.
The remarkable additional aspect of the MKdV equation
is that it also bears slowly oscillating solutions, named
breathers, obtained just as rigorously via the inverse scat-
tering method [22,60]. These solutions (whose wavelength
is comparable to their localized width, hence the ‘breath-
ing’ impression and the name) share the remarkable prop-
erties of solitons; in particular, they are seen to survive
collisions between themselves and with pulse solitons [22].
Their analytic form can be readily found in reference [22]
(see Sect. 4.1) and [60] and will not be reproduced here,
since their condition of existence, namely p0 � q0 (cf.
Ref. [22]) is rather not satisfied in the case of Debye-
interacting dust grains. Note however that breather-like
excitations may exist in a DP crystal, as one may see via
a different (perturbative) analysis of the nonlinear modu-
lation of the amplitude of longitudinal lattice waves. This
is considered in separate work [61].

6 The Boussinesq (Bq) and generalized
Boussinesq (GBq) equations

Remember that the KdV-type equations in the preceding
section were obtained from the equation of motion (13)
in an approximative manner, assuming near-sonic propa-
gation and neglecting high-order time derivatives. Those
results are therefore expected to hold for velocity values
only slightly above v0. We shall now see how these as-
sumptions can be relaxed by directly relying on the initial
(nonlinear) equation.

Let us consider equation (13) again (for ν = 0). Upon
setting p0 = −2p, q0 = 3q, v2

1r
2
0 = h > 0, and integrating

once, with respect to x, one exactly obtains, for w = ux,
the generalized Boussinesq (GBq) equation

ẅ − v2
0wxx = hwxxxx + p(w2)xx + q(w3)xx (37)

which, neglecting the cubic nonlinearity coefficient q (viz.
q0 = 0 in (13)), reduces to the well-known Boussinesq
(Bq) equation, widely studied e.g. in solid chains; see
e.g. [22,23,57]. It possesses well-known localized solutions,
whose derivation is straightforward and need not be repro-
duced here. The exact expressions obtained from (37) for
the relative displacement w(x, t) and the longitudinal dis-
placement u(x, t) are exhaustively presented and discussed
in references [22,23]. The analytic kink/antikink-type lo-
calized solutions for u(x, t) read

u3(x, t) = ∓2sgn(h)
(

6h

q0

)1/2

× tan−1

[
W3 tanh

x − vt − x0

L3

]
. (38)

Here the soliton velocity is v, while the soliton width de-
pends on both W3 and L3, which are

W3 =

{
[p2

0 + 6q0(v2 − v2
0)]

1/2 ∓ |p0|
[p2

0 + 6q0(v2 − v2
0)]

1/2 ± |p0|

}1/2

,

L3 = 2
(

h

v2 − v2
0

)1/2

. (39)

Recall that, for Debye interactions, h, q > 0 and p =
−p0 < 0 (see above), prescribing the ‘supersonic’ (v > v0)
propagation of the solutions; the same was true of the KdV
solitons obtained above. Notice, however, that the expres-
sions obtained here for the longitudinal displacement u
represent both rarefactive and compressive lattice excita-
tions even for p0 > 0 (see Tab. I in [23], for p = −p0 < 0);
remember that this feature was absent in the KdV equa-
tion (25), where p0 > 0 i.e. s = +1 always led to a com-
pressive solution in (28). In fact, this is also true of the
Bq equation, which is obtained for q0 = 0, i.e. neglecting
the last term in the continuum equation of motion (13).
The exact solution then reads

uBq(x, t) = −sgn(h)sgn(p0)
6[h(v2 − v2

0)]1/2

|p0|
× tanh

x − vt − x0

L1
, (40)

which, for positive h and p0, prescribes only compressive
supersonic kinks, pretty much like the solution u1 derived
from the KdV theory above (cf. Tab. I in [23], for h0 > 0,
p < 0 and q = 0).

Closing this section, one may wish to compare the GBq
and Bq solutions (38, 40), to the homologous EKdV- and
KdV-related solutions (35, 28), respectively, obtained pre-
viously: one may readily check that the former ones tend
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to the latter two as v tends to v0 (to see this, one may
set v2 − v2

0 = (v + v0)(v2 − v0) ≈ 2v0(v2 − v0); recall that
h = v2

1r
2
0). Nevertheless, this velocity range restriction is

relaxed in the Boussinesq-related description.

7 Excitations in real DP crystals

It is now quite tempting to observe and compare the pre-
dictions furnished by the above nonlinear models in a DP
crystal in terms of excitation features, e.g. dimensions and
form. For instance, one may substitute the expressions for
the model’s physical parameters (i.e. ω0, v0, v1, p0 and q0)
derived in Section 2.3 into the definitions in the latter
three sections, in order to derive a final form for localized
excitations in a real DP crystal, in terms of the propa-
gation velocity v, the lattice parameter κ and, generally,
the sign s (= +1 for Debye interactions). The interest in
this procedure is evident, since one may seek feedback (e.g.
parameter values, excitation behaviour) from experiments
and then investigate the validity of the above models by
adjusting them to real DP crystal values.

The final expressions for uj(x, t) (j = 1, 2, 3, cf.
Eqs. (28, 35, 38), respectively) are somewhat lengthy and
need not be reported here (since they are straightforward
to derive). We may nevertheless summarize some interest-
ing numerical results.

The soliton width L1, as defined in (28), now becomes
L1 = v2

0/p0u1,m: we see that the product of the displace-
ment u kink’s width and maximum value remains constant
(regulated by the cubic interaction potential nonlinearity),
viz. u1,mL1 = 1/p0, unlike the KdV pulse soliton for the
relative displacement w = ux which is characterized by
w1,mL2

1 = cst. Both the kink maximum value u1,m and
width L1 depend on the velocity v; as a matter of fact,
faster kink excitations will be taller and narrower — see
Figure 9 — since now

u1,m

r0
=

v2
0

√
6

p0

√
M − 1,

L1

r0
=

1√
6(M − 1)

. (41)

Recall that the Mach number M = v/v0 is always larger
than unity. Furthermore, the magnitude of the excitation
seems to decrease with κ; see Figure 9a: nevertheless, very
high values (near u/r0 = 1) observed for low κ and high v
are rather not to be trusted, since they contradict the
continuum approximation u � r0.

Finally, one may compare the solutions obtained from
the above theories, for a typical value of κ, say 1.25, ac-
cording with real experimental values. The KdV-, EKdV-
and Boussinesq-related kink excitations, i.e. u1, u2 and u3,
are depicted in Figures 10–12, for three different values
of M , 1.1, 1.25 and 2. We see that the EKdV and Bq mod-
els allow for both compressive and rarefactive structures,
while the KdV description predicts a localized compres-
sion, which is quite sensitive to velocity changes. As ex-
pected (cf. the discussion above), both the EKdV- and Bq-
related compressive excitations are similar in magnitude
to the KdV-related anti-kink for near-sonic velocity (i.e.

(a)

(b)

Fig. 9. (a) The (normalized) maximum value of the kink-
shaped localized displacement u1(x, t)/r0, as obtained from
the KdV equation, is depicted versus the lattice parameter
κ and the normalized velocity (Mach number) M = v/v0.
(b) The (normalized) width L1/r0 of u1(x, t) is depicted
against M = v/v0.

near M ≈ 1). Nevertheless, we see that the KdV-related
antikink becomes taller and narrower as velocity increases,
and substantially differentiates itself from its EKdV- and
Bq-analogues. One may wonder whether or not the KdV
picture (more familiar since widely studied) is adequate
for the modeling of a real DP crystal, and also whether
the rarefactive excitations predicted by other theories can
indeed be sustained in the crystal. These questions may be
answered by appropriate experiments and, possibly, also
be investigated by numerical simulations. From a purely
theoretical point of view, the Boussinesq-based descrip-
tion appears to be more rigorous (recall that the KdV
was derived in some approximation) and valid in a more
extended region than both the KdV and extended-KdV
theories.

8 Discreteness effects

The above analytical solutions have been derived in the
continuum limit, i.e. for L � r0, where L is the typical
spatial dimension (width) of the solitary excitation. One
may therefore define the discreteness parameter g = r0/L,
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(a)

(b)

Fig. 10. The antikink excitation predicted by the KdV theory
(solid curve) is compared to the (two) solutions obtained from
(a) the EkDV equation; (b) the Bq equation-related model
(dashed curves). Values: lattice parameter κ = 1.1, normalized
velocity (Mach number) M = v/v0 = 1.25.

and require a posteriori that g � 1. From the expressions
derived for the Bq equation above, one easily sees that
g ∼ (v2 − v2

0)1/2/v1, so this requirement is indeed fulfilled
for propagation velocities v ≈ v0. However, for higher val-
ues of v, the (narrower) soliton will be subject to a variety
of effects e.g. shape distortion, wave radiation etc., due to
the intrinsic lattice discreteness. These effects have been
investigated in solid state physics [62,63] and may be con-
sidered with respect to DP crystals at a later stage. Let us
briefly point out that narrow kink-shaped lattice excita-
tions have been numerically shown to propagate with no
considerable loss of energy, in a quite general monoatomic
lattice model [62].

Also worth mentioning is the work of Rosenau [65] who
derived an improved version of the Boussinesq equation
(the I-Bq equation) in a quasi-continuum limit. The I-Bq
equation, which bears the general structure of (37) upon
replacing huxxxx therein by huxxtt (yet with different co-
efficient definitions), is not integrable and bears solitary
wave solutions which do not collide elastically; neverthe-
less, it was numerically shown to be more stable than the
Bq equation, and was argued to model discrete lattice dy-
namics more efficiently, upon comparison of theoretical
predictions to exact numerical results [63]. Further exam-
ination of such effects may be carried out in dust-lattices,
once our feedback from experiments has sufficiently deter-
mined the relevance of the issue in real DP crystals, i.e.
typical excitation width, dynamics etc.

(a)

(b)

Fig. 11. Similar to Figure 10, for M = v/v0 = 1.25.

(a)

(b)

Fig. 12. Similar to Figures 11 and 12, for M = v/v0 = 2.

It should be underlined that the possibility for the ex-
istence of breather solitons, anticipated above, establishes
a link between complex plasma ‘solid state’ modeling and
the framework of discreteness-related localized excitations
(discrete breathers [66], intrinsic localized modes [67]),
which have recently received increasing interest among
researchers in the nonlinear dynamics community.
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These localized modes, which are due to coupling anhar-
monicity and are stabilized by lattice discreteness, have
been shown to exist in frequency regions forbidden to or-
dinary lattice waves and account for energy localization
in highly discrete real crystals, where continuum theories
fail. The relevance of this framework to dust crystals ap-
pears to be an interesting open area for investigation.

9 Envelope excitations and shocks — open
issues

As a final interesting issue involved in the nonlinear dy-
namics of longitudinal lattice oscillations, let us mention
the nonlinear modulation of the amplitude of dust-lattice
waves, a well-known mechanism related to harmonic gen-
eration and, possibly, the modulational instability of
waves propagating in lattices, eventually leading to modu-
lated wave packet energy localization via the formation of
envelope solitons [29]. This framework, which was recently
also investigated with respect to low-frequency (dust-
acoustic, dust-ion acoustic) electrostatic waves in dusty
plasmas [32], has been partly analyzed, on the basis of the
Melandsø [12] model in reference [33]. The authors relied
on a truncated Boussinesq equation, in the form of (37) for
q = 0, and succeeded in predicting the occurrence of mod-
ulational instability in LDL waves in DP crystals and the
formation of envelope structures. Nevertheless, the non-
linearity coefficient q omitted therein seems to compete
with p in (37) (notice the different signs) and is rather
expected to affect significantly the wave’s stability profile.
It should be stressed that these localized envelope excita-
tions result from a physical mechanism which is intrinsi-
cally different from the one related to the small-amplitude
excitations described in this paper; see the discussion in
reference [68]. An extended study of this modulation non-
linear mechanism is in row and will be reported elsewhere,
for clarity and conciseness.

As a final comment, we may speculate on the role
of damping, herewith ignored, on the dynamics of dust-
lattice waves. It is known that weak damping may balance
nonlinearity, leading to the formation of shock wave fronts,
as predicted in references [30,43] and confirmed by numer-
ical simulations [44]. Furthermore, it was recently shown
that the same mechanism may result in the formation of
large-amplitude wide-shaped solitary waves, which may
later break into a (gradually damped) train of solitons or
a wavepacket depending on physical parameters [42]. We
see that friction, yet weak, may play a predominant role
in the life and death of localized excitations; this effect
definitely deserves paying close attention with respect to
waves propagating in dust crystals. Again, one would ex-
pect phenomenological theories followed by appropriately
designed experiments to elucidate the friction mechanisms
inherent in longitudinal dust-lattice wave propagation, in
view of a more complete description than the one provided
by the conservative model adopted here.

10 Conclusions

This work was devoted to an investigation of the rele-
vance of existing model nonlinear theories to the dynam-
ics of longitudinal oscillations in anharmonic chains, with
emphasis on dust-lattice excitations in (strongly-coupled)
complex plasma crystals. Taking into account an arbitrary
interaction potential and long-range interactions, we have
rigorously shown that both compressive and rarefactive
kink-shaped (shock-like) excitations may form and prop-
agate in the lattice, depending basically on the mecha-
nism of interaction between grains located at each site.
These excitations are effectively modeled by either KdV-
or Boussinesq-type equations, whose analytic form was
presented and whose qualitative and quantitative differ-
ences were discussed. In any case, the theory predicts co-
herent wave propagation above the lattice’s ‘sound’ speed,
in agreement with previous theoretical works and exper-
imental observations (in both atomic and dust-lattices).
It may be appropriate to mention that subsonic soliton
propagation in monoatomic chains was also numerically
considered and shown to be feasible in the past [62]. Let
us point out that the model used here to pass from a
discrete description to the continuum (long-wavelength)
limit is quite generic, so possible modification via refined
nonlinear equations may readily be obtained from it, for
future consideration.

Furthermore, we have discussed the possibility of the
formation of breather modes and envelope excitations, as
a consequence of modulated wave packet instability, an-
ticipating their link to discrete nonlinear theories of lo-
calized modes, left for future consideration; despite their
analytical complexity, these models may, in principle, be
of relevance in dust crystals due to the finite dimensions of
the chain and its intrinsic spatial discreteness. Finally, the
possible role played by dissipation mechanisms has been
briefly discussed.

The present study relies on, and aims at extend-
ing, previous theories on both anharmonic atomic chains
and dusty plasma crystals. We hope to have succeeded
in reviewing the former (extending them to the case of
long-range electrostatic interactions) and generalizing the
latter (which are still in an early stage). Hopefully, our
predictions may be confirmed by appropriately set-up ex-
periments, with the ambition of throwing some light in
the relatively new and challenging field of strongly-coupled
complex plasmas and dust-lattice dynamics.

One of us (I.K.) feels obliged to express (post-mortem,
helas) his profound gratitude towards his teacher (and friend)
Stephanos Pnevmatikos, who tragically passed away some
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cated to his vivid memory. This work was supported by the Eu-
ropean Commission (Brussels) through the Human Potential
Research and Training Network via the project entitled: “Com-
plex Plasmas: The Science of Laboratory Colloidal Plasmas
and Mesospheric Charged Aerosols” (Contract No. HPRN-CT-
2000-00140).
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Appendix A: Computation of the coefficients
for Debye (Yukawa) interactions

Consider the Debye potential φD(r) = Qe−r/λD/r. Defin-
ing the (positive real) lattice parameter κ = r0/λD, it is
straightforward to evaluate the quantities

φ′
D(lr0) = − Q

λ2
D

e−lκ 1 + lκ

(lκ)2
,

φ′′
D(lr0) = +

2Q

λ3
D

e−lκ 1 + lκ + (lκ)2

2

(lκ)3
,

φ′′′
D(lr0) = −6Q

λ4
D

e−lκ 1 + lκ + (lκ)2

2 + (lκ)3

6

(lκ)4
,

φ′′′′
D (lr0) = +

24Q

λ5
D

e−lκ 1 + lκ + (lκ)2

2 + (lκ)3

6 + (lκ)4

24

(lκ)5
,

where the prime denotes differentiation and l = 1, 2, 3, ... is
a positive integer. Now, we shall combine these expressions
with equations (7, 8, 10, 12), defining v2

0 , v2
1 , p0 and q0,

respectively.
Let us define the general (families of) sum(s)

Sn(a) =
∞∑

l=1

alln Ŝ(N)
n (a) =

N∑
l=1

alln

(0 < a < 1), (A.1)

(thinking of a = e−κ, in particular); note that Ŝ
(N)
n (a) →

Sn(a) for N → ∞; also, Ŝ
(1)
n (a) = a. Making use of the

well-known geometrical series properties:

S0(a) =
∞∑
l=1

al =
a

1 − a
Ŝ

(N)
0 =

N∑
l=1

al =
a(1 − aN )

1 − a

(0 < a < 1), (A.2)

it is straightforward to derive Sn, Ŝ
(N)
n for l ≥ 1, by dif-

ferentiating with respect to a. One obtains

S1(a) =
∞∑

l=1

all = a
∞∑

l=1

lal−1 = a
∞∑

l=1

∂(al)
∂a

= a
∂

∂a

∞∑
l=1

al = a
∂S0

∂a
=

a

(1 − a)2
.

In a similar manner, iterating from

∂2(al)/∂a2 = l(l − 1)al−2 = a−2(l2al − lal),

one finds

S2(a) =
(

a2 ∂2

∂a2
+ a

∂

∂a

)
S0 = ... =

a(1 + a)
(1 − a)3

;

then

S3(a) =
(

a3 ∂3

∂a3
+ 3a2 ∂2

∂a2
+ a

∂

∂a

)
S0

= ... =
a(a2 + 4a + 1)

(1 − a)4
,

and so forth. Also note the identity

S−1(a) =
∞∑

l=1

al

l
= − ln(1 − a) (0 < a < 1).

(A.3)
The corresponding set of formulae may be obtained for
Ŝ

(N)
n in a similar manner.

Now, substituting a = e−κ and using the derivatives
of φD above, one may immediately evaluate the expres-
sions (7, 8, 10, 12). Setting r0 = κλD everywhere, it is
straightforward to show that

c2 ≡ v2
0 ≡ ω2

0,Lr2
0 =

Q

M
κ2λ2

D

∞∑
l=1

l2φ′′(lr0) = ...

=
2Q2

MλD

[
κ−1S−1(e−κ) + κ0S0(e−κ)

+
1
2
κ1S1(e−κ)

]
. (A.4)

In the same manner

c4

r2
0

≡ v2
1 =

Q

12M
κ2λ2

D

∞∑
l=1

l4φ′′(lr0) = ...

=
Q2

6MλD

[
κ−1S1(e−κ) + κ0S2(e−κ)

+
1
2
κ1S3(e−κ)

]
. (A.5)

Also

p0 ≡ −c11 = − Q

M
κ3λ3

D

∞∑
l=1

l3φ′′′(lr0)

=... =
6Q2

MλD

[
κ−1S−1(e−κ) + κ0S0(e−κ)

+
1
2
κ1S1(e−κ) +

1
6
κ2S2(e−κ)

]
. (A.6)

Finally, from (12) we have

q0 ≡ c111 =
Q

2M
κ4λ4

D

∞∑
l=1

l4φ′′′′(lr0) = ...

=
12Q2

MλD

[
κ−1S−1(e−κ) + κ0S0(e−κ)

+
1
2
κ1S1(e−κ) +

1
6
κ2S2(e−κ) +

1
24

κ3S3(e−κ)
]
.

(A.7)

The corresponding expressions for a value of N are given
by substituting Sn(·) with Ŝ

(N)
n (·) everywhere. One imme-

diately sees that p0/v2
0 > 2, q0/v2

0 > 6; also, v2
1/v2

0 = 12
for N = 1 (only), i.e. for the NNI case.
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Finally, combining the above exact expressions for
S−1(a), ..., S3(a), we obtain exactly expressions (18–21)
in the text.
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58. H.-Y. Hao, H.J. Maris, Phys. Rev. B 64, 064302 (2001)



I. Kourakis and P.K. Shukla: Nonlinear theory of solitary waves 263

59. In order to see this, transform the variables in reference [21]
as: u → w, x → ζ/

√
b, t → τ/

√
b, α → a/6, β → â/6,
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